Bounding the Obstructions for Apices of Minor-closed Graph Classes

Ignasi Sau, LIRMM, Univ Montpellier, CNRS, Montpellier, France, ignasi.sau@lirmm.fr

<u>Giannos Stamoulis</u>, LIRMM, Univ Montpellier, Montpellier, France, giannos.stamoulis@lirmm.fr

Dimitrios M. Thilikos, LIRMM, Univ Montpellier, CNRS, Montpellier, France, sedthilk@thilikos.info

A graph class \mathcal{G} is *minor-closed* if every minor of a graph in \mathcal{G} is also a member of \mathcal{G} . Given a graph class \mathcal{G} , its *minor obstruction set*, denoted by **obs**(\mathcal{G}), is defined as the set of all minor-minimal graphs not in \mathcal{G} . According to the celebrated Robertson and Seymour's theorem [1], the obstruction set of every minor-closed graph class is finite.

The study of $\mathbf{obs}(\mathcal{G})$ for distinct instantiations of minor-closed graph classes \mathcal{G} is an active topic in graph theory. There are many results in the literature that achieve a complete or partial identification of the obstruction set of different minor-closed graph classes.

Let \mathcal{G} be a minor-closed graph class and k be a non-negative integer. We say that a graph G is a k-apex of \mathcal{G} if G contains a et S of at most k vertices such that $G \setminus S$ belongs to \mathcal{G} . We denote by $\mathcal{A}_k(\mathcal{G})$ the set of all graphs that are k-apices of \mathcal{G} and note that if \mathcal{G} is minor-closed, then also $\mathcal{A}_k(\mathcal{G})$ is minor-closed. We prove that every graph in the obstruction set of $\mathcal{A}_k(\mathcal{G})$ has size at most $2^{2^{2^{2^{poly}(k)}}}$, where poly is a polynomial function whose degree depends on the maximum size of a graph in $\mathbf{obs}(\mathcal{G})$. This bound drops to $2^{2^{poly}(k)}$ when \mathcal{G} excludes some apex graph as a minor, i.e., a graph that is an 1-apex to the class of planar graphs.

Références

 Neil Robertson and Paul D. Seymour. Graph Minors. XX. Wagner's conjecture. Journal of Combinatorial Theory, Series B, 92(2):325-357, 2004. doi:10.1016/j.jctb.2004.08.001.