Vizing’s and Shannon’s Theorems for edge-defective colouring

Guillaume Aubian, IRIF-Talgo, Paris aubian@ens.fr
Pierre Aboulker, Talgo, Paris, pierreaboulker@gmail.com
Chien-Chung Huang, Talgo, Paris, Chien-Chung.Huang@ens.fr

For a given multigraph G and integer d, $\chi'_d(G)$ is the minimum size of a partition of G’s edges into subgraphs of maximum degree at most d. Note that for $d = 1$ this corresponds to the chromatic index of G.

We prove that for every integer d, every multigraph G with maximum degree Δ satisfies $\chi'_d(G) \leq \lceil \frac{\Delta}{d} \rceil$ if d is even and $\chi'_d(G) \leq \lceil \frac{3\Delta - 1}{3d - 1} \rceil$ if d is odd and that these bounds are tight. This generalizes a result from Shannon in [1] stating that for any multigraph G, $\chi'_1(G) \leq \frac{3\Delta(G)}{2}$.

We also prove that for every simple graph G, $\chi'_d(G) \in \{\lceil \frac{\Delta}{d} \rceil, \lceil \frac{\Delta + 1}{d} \rceil \}$ and characterize the values of d and Δ for which it is NP-complete to compute $\chi'_d(G)$, thus generalizing the infamous Vizing’s theorem (see [2]) and the corresponding NP-completeness result of Leven and Galil in [3].

Références