Hitting and Packing Rectangles with a Bounded Aspect Ratio

Marco Caoduro, G-SCOP, Grenoble, marco.caoduro@grenoble-inp.fr András Sebő, G-SCOP, Grenoble, andras.sebo@grenoble-inp.fr

Given a natural number r, a family of rectangles \mathcal{R} is said to have bounded aspect ratio r if for any rectangle in \mathcal{R} the ratio of the lengths of two perpendicular sides is at most r. Ahlswede and Karapetyan [1] stated, without providing proof, that for a family of axis-parallel rectangles with bounded aspect ratio $r \tau \leq 2(r+1) \nu$, where τ is the minimum number of points needed to hit all the rectangles in the family and ν is the maximum number of pairwise disjoint rectangles in the family.

We give an elementary proof of this result and generalize it to not necessarily axis-parallel rectangles, with a slightly weaker constant $\tau \leq 4(r+1) \nu$. Moreover, we observe that, in this more general setting, if one drops the hypothesis that the rectangles have a bounded aspect ratio, then $\frac{\tau}{\nu}$ can be arbitrarily large. Finally, we give more precise upper and lower bounds on τ for the particular case $r=1$ that corresponds to families of squares.

Références

[1] R. Ahlswede and I. Karapetyan, Intersection Graphs of Rectangles and Segments, In : Ahlswede R. et al. (eds) General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer Science, vol 4123. Springer, Berlin, Heidelberg, 1064-1065

