C. Robin : When all holes have the same length

Jake Horsfield, University of Leeds, U.K., sc15jh@leeds.ac.uk Myriam Preissmann, G-Scop, Grenoble, myriam.preissmann@grenoble-inp.fr <u>Cléophée Robin</u>, G-Scop, Grenoble, cleophee.robin@grenoble-inp.fr <u>Nicolas Trotignon</u>, LIP, Lyon, nicolas.trotignon@ens-lyon.fr Ni Luh Dewi Sintiari, LIP, Lyon ni-luh-dewi.sintiari@ens-lyon.fr Kristina Vušković, University of Leeds, U.K., K.Vuskovic@leeds.ac.uk

A hole is an induced cycle of length at least 4. For an integer $k \ge 4$, we denote by C_k , the class of graphs where every hole has length k.

We have defined a new class of graphs named *blowup of* ℓ *-templatse* whose all holes have length $2\ell + 1$. Using earlier results on other related classes of graphs, we did obtain the following structural theorem :

Theorem 1 Let $\ell \geq 3$ be an integer. If G is a graph in $C_{2\ell+1}$ then one of the following holds :

- G is a ring of length $2\ell + 1$ ([1]),
- G is a proper blowup of a twinless odd ℓ -template,
- G has a universal vertex,
- G has a clique cutset.

The classes of perfect graphs ([2]) and even-hole-free graphs ([3]), both exclude holes depending on the parity of their length. For an even $k \ge 6$, C_k is a subclass of the class of perfect graphs and for an odd k, C_k is a subclass of even-hole-free graphs. The well known class of chordal graphs (graphs containing no hole) is trivially included in every C_k

Linda Cook and Paul Seymour independently found a similar characterization.

Références

- [1] V. Boncompagni, I. Penev and K. Vušković, *Clique cutsets beyond chordal graphs*, Electronic Notes in Discrete Mathematics (2017), 62 :81–86.
- [2] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, *The strong perfect graph theorem*, Annals of Mathematics (2005), 164:51–229.
- [3] K. Vušković, Even-hole-free graphs : A survey, Applicable Analysis and Discrete Mathematics (2010), 4.