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Quantum Annealing (QA) is a computational framework where a quan-
tum system’s continuous evolution is used to find the global minimum of an
objective function over an unstructured search space. It can be seen as a
general metaheuristic for optimization problems, including NP-hard ones if
we allow an exponentially large running time. While QA is widely studied
from a heuristic point of view, little is known about theoretical guarantees
on the quality of the solutions obtained in polynomial time.

We believe that quantum annealing is a promising, general framework
for designing approximation algorithms, but the main obstacle is the current
lack of mathematical tools for analyzing the solutions obtained in limited
time. The purpose of this work is to make a step forward toward such tools,
and show that QA produces reasonable solutions for specific optimization
problems, on specific graph classes. More precisely, we will focus on short-
constant-time evolution, and we are interested in getting an approximate
solution. Indeed, we would like to understand what guarantee on the results
quantum computers can expect to reach while they are stable only for a very
short time.

In this work we use a technique borrowed from theoretical physics, the
Lieb-Robinson (LR) bound, and develop new tools proving that short, constant
time quantum annealing guarantees constant factor approximations ratios for
some optimization problems when restricted to bounded degree graphs. In-
formally, on bounded degree graphs the LR bound allows us to retrieve a
(relaxed) locality argument, hence the approximation ratio can be deduced
by studying subgraphs of bounded radius.

We illustrate our tools on problems MaxCut and Maximum Independent
Set for cubic graphs, providing explicit approximation ratios and the run-
times needed to obtain them. Hence our results are of similar flavor to the
well-known ones obtained in the different but related QAOA (quantum op-
timization algorithms) framework.

Eventually, we discuss theoretical and experimental arguments for further
improvements.



